
Matt Martineau, Stan Posey, Filippo Spiga 14-Oct-2020

AMGX GPU SOLVER 
DEVELOPMENTS FOR OPENFOAM



2

SUMMARY
Extended PETSc4FOAM library (from members of the HPC TC) to 
accelerate pressure solves with AmgX

Early results of the AmgX solver library used to accelerate the 
OpenFOAM pressure solve on GPUs achieved ~4x to ~8x 
speedups

A new library, FOAM2CSR, for low-overhead conversion between 
OpenFOAM LDU matrices and GPU-resident CSR matrices

Multi-GPU/multi-node capability, with ongoing performance 
optimisation

PETSc4FOAM: A Library to plug-in PETSc into the OpenFOAM Framework 



3

AMGX FOR OPENFOAM

Fully GPU accelerated library and highly 
configurable

Algebraic multigrid (AMG) preconditioning

In this study: PCG + AMG

All results refer to the v2.1.x pre-release branch

Significant (>2x) setup performance increases

Improved support for new versions of CUDA (10, 11)

https://github.com/NVIDIA/AMGX

Open-source sparse iterative solver library
"solver": {

"preconditioner": {
"solver": "AMG",
"cycle": "V",
"smoother": {

"solver": "BLOCK_JACOBI"
},
"max_iters": 1,
"max_levels": 25,
"interpolator": "D2",
"presweeps": 1,
"postsweeps": 1

},
"solver": "PCG",
"max_iters": 100,
"convergence": "ABSOLUTE",
"tolerance": 1e‐04,
"norm": "L1"

}

AmgX configuration for AMG + PCG



4

BASIC INITIAL SOLUTION

Extending PETSc4FOAM infrastructure to 
call into AmgXWrapper to drive AmgX

AmgXWrapper accepts PETSc data 
structures

Initial performance slower than CPU

Much performance critical code not 
resident on the GPU

First pass at GPU acceleration

https://github.com/barbagroup/AmgXWrapper

High level call structure for initial 
acceleration approach using AmgX

AmgX

PETSc4FOAM

AmgXWrapper

OpenFOAM

PETSc

PETSc
structures



5

INITIAL SOLUTION PROFILING

1 MM cell case on DGX-1 using V100 and single BDW core

Accelerate buildMat and reduce overhead of 
amgxWrapperSetA

AMGX_solver_setup required on first step; in subsequent 
steps this can be replaced with AMGX_solver_resetup

“Wrap PETSc vector” can be avoided

Searching for optimisation potential Task Time

Build matrix 4.7s

Get local matrix 0.4s

Upload matrix 0.6s

Setup 1.1s

Wrap PETSc vector 0.1s

Pressure solve 0.2s

Out of 7.2s pressure solve time only 
1.4s is effective GPU work



6

ADAPTED SOLUTION
To improve performance

AmgX

PETSc4FOAM

AmgXWrapper

OpenFOAM

PETSc

FOAM2CSR

CSR 
structures

FOAM2CSR implemented to increase the amount 
of computational workload resident on the GPU

AmgXWrapper is extended and optimised to 
support CSR and improve host utilization

AmgX

PETSc4FOAM

AmgXWrapper

OpenFOAM

PETSc

PETSc structures



7

FOAM2CSR APPROACH

After the first step - low overhead conversion

LDU matrix visualisation
(taken from S. Bnà, I. Spisso, M. Olesen, G. Rossi. 
PETSc4FOAM: A Library to plug-in PETSc into the OpenFOAM Framework)

OpenFOAM LDU to GPU-resident CSR

FOAM2CSR Algorithm:

(1) Copy/reorganise LDU matrix data ready for conversion

(2) Sort perm and rowIndices, by rowIndices (radix sort)

(3) Collapse rowIndices to rowOffsets (exclusive scan)

(4) Sort colIndices and values by perm

diagAddr = [ 0, 1, …, Nrows ]
perm = [ 0, 1, …, Nnz ]
colIndices = [ diagAddr upperAddr lowerAddr ]
rowIndices = [ diagAddr lowerAddr upperAddr ]
values     = [ diag upper lower ] 



8

AMGX / AMGXWRAPPER CHANGES

Added OpenFOAM residual calculation to AmgX

Fixed the default partitioning scheme in AmgX

We extended AmgXWrapper to:

Handle raw CSR inputs, either host or device pointers

Support updating matrix coefficients only, and re-
setup, a fast setup for timesteps where sparsity 
patterns persist

Perform matrix consolidation using CUDA IPC calls

https://github.com/barbagroup/AmgXWrapper

Improving integration and performance
/* Upload CSR matrix to AmgX */
ErrorCode setA(

const int nGlobalRows,
const int nLocalRows,
const int nLocalNz,
const int* rowOffsets,
const int* colIndicesGlobal,
const double* values,
const int* partData);

/* Update CSR matrix values in AmgX */
ErrorCode updateA(

const int nLocalRows,
const int nLocalNz,
const double* values);

/* Performs the linear solve in AmgX */
ErrorCode solve(

dobule* solution, 
const double* rhs, 
const int nRows);



9

AMGXWRAPPER CONSOLIDATION

Performance limited by the single core restriction 
due to the CPU-resident momentum solves etc.

We developed a consolidation feature in 
AmgXWrapper that is low overhead

CPU cores can be saturated for improved simulation 
runtime - around 8x wallclock speedup single GPU

Merging matrix elements for performance

Rank 1

Rank 0 Rank 2

Rank 3

A0

A1

A2

A3

A0
A1

Rank 0
A2
A3

Rank 2

CU
D

A IPC

CU
D

A IPC

Matrix assembly, momentum solves, etc.



10

EXPERIMENTAL SETUP
Problem and system

Using the HPC committee 3D lid-driven cavity model 
described in the PRACE whitepaper 
https://develop.openfoam.com/committees/hpc

The medium (M) test problem fits adequately on a 
single GPU (200x200x200 or total 8 MM cells) Lid Driven cavity 

(M, 200x200x200, 20 steps) solution, 
accelerated with AmgX



11

RESULTS – PRESSURE SOLVE
M problem (8 MM cells, 100 iters) on DGX-1

Measuring all steps required to 
fulfil the pressure solve, i.e. 
LDU2CSR, comms, memory 
copies, solve etc.

Significant GPU speedups over 
FOAM-GAMG of ~4x to ~8x

New A100 GPU 1.6x faster than 
V100 for A100 speedups over 
FOAM-GAMG of ~6x to ~13x

Still room for improvement



12

RESULTS - WALLCLOCK
M problem (8 MM cells, 100 iters) on DGX-1

Full solution wallclock is 
reasonable considering only 
pressure solve (now ~35% of 
total) is GPU accelerated

Overhead of acceleration 
(i.e. copying data to and 
from the GPU) is small

Could be greatly improved by 
accelerating matrix assembly 
and momentum solves



13

RESULTS – WEAK SCALING
Preliminary Multi-GPU Results on DGX-1

The solver can be run on multiple 
GPUs across multiple nodes

Consolidation for CPU cores also 
works in multi-GPU configuration

Data movement is minimal, but could 
be removed if prior steps accelerated

Setup scaling limits non-cached case

The limitation is well understood, 
and we are currently optimising



14

CONCLUSIONS
Early results showcase the OpenFOAM pressure solve 
accelerated on NVIDIA V100 GPUs using AmgX, achieving 
~4x to ~8x speedup

A new library, FOAM2CSR, was developed for low-overhead 
conversion between OpenFOAM LDU matrices and GPU-
resident CSR matrices

Changes to AmgX, and AmgXWrapper, enable integration 
with OpenFOAM and improved performance

The multi-GPU/multi-node implementation is fully 
functional and performance optimisation is ongoing


