$\mathsf{Open}\nabla\mathsf{FOAM}^{\textcircled{R}} \ \textbf{Request for Quotation}$

TITLE		GPU Acceleration Pilot:	
		Productisation of newly developed <u>AmgX</u> 4foam external module for	
		GPU acceleration of linear algebra solver inside OpenFOAM-vYYMM	
		Linear algebra profiling in standard output	
		[Optional] Physics modelling and Linear solver in CUDA	
FAO		Potential bidders (ratified by OpenFOAM Governance Steering	
		Committee)	
Reque	ster/TC	Ivan Spisso on behalf of HPC TC's members:	
		Simone Bnà, Filippo Spiga, Matthew Martineau, Stan Posey, Raman	
		Bansal, Neil Ashton, Fabrizio Magugliani, Mark Olesen	
Fundin	ig offered	Range 25-40kEUR	
		Funded through third-party bespoke donations to OpenFOAM	
		Governance Funds	
Requir	ements		
 Create a self-contained library to use amgx4foam/nvidia4foam with NVIDIA GPUs as a 			
third-party plug-in to OpenFOAM-vYYMM			
	 Profile cod 	e for named application(s), assess and propose potential speed-up	
	 Demonstration 	ate potential speed-up through library plugins for the chosen	
	applicatior	n(s)	
- Assess speed-up potential, implement via CUDA-code and demonstrate for a named			
	application (e.g. ur	iderhood thermal) speed-up for a chosen Physics Model (e.g. Radiation)	
-	Assess speed-up po	otential, implement via CUDA-code and demonstrate for a named	
	application (e.g. ur	iderhood thermal) speed-up for a chosen Solver (e.g. view-factor)	
Partners (coordinated by Ivan Spisso, HPC-TC chair)			
- Bidder (funded)			
- Nvidia (in-kind)			
-	FSI/OpenCED (fund	ted)	
-	Cineca (in-kind)		
- Cirica (iri-Kiria) - 3 rd party contributors (three-to-five funders)		ors (three-to-five funders)	
GPULDO	orting of linear algeb	are inside OpenEOAM using AmgX by NVIDIA is based on three	
librarie		a matter open oaw, using angy by widia, is based on three	
1 bttps://gitlab.bps.singes.it/openfoam/foam2csr: responsible for converting the sparse			
<u>intrps.//gitiab.npc.cineca.it/openioani/toani/cosi_</u> . responsible for converting tr matrix system from native LDLI format of OpenEOAM into CCP system for system			
matrix system from native LDU format of OpenFOAM Into CSK suitable for external linea			
2	CSR matrices, and	Amgx integration	
2.	https://develop.op	<u>entoam.com/modules/external-solver</u> ,	
3.	https://github.com	<u>I/NVIDIA/AMGX</u> , the open-source NVIDIA GPU-accelerated multi-grid	
	accelerated solver		
Activity	v nronosed.		
1 Adding profiling bo		ooks for linear algebra solver part of the code (Task owner:	
1.	ESI/OpenCFD)		
2	Software engineer	ing: package the different pieces of codes in a self-contained package in	
2,	a public repo (Tas	k owner: Bidder, Nvidia,ESI/OpenCFD)	

a. Fuse FOAM2CSR + AmgX in one library, and start version 1.0: (Task Owner: NVIDIA)

Open ∇ FOAM® **Request for Quotation**

- b. Deployment of a plug-in<u>external-solver</u> to use this library as an external module, such as nvidia4foam/amgx4foam (similarly/based on petsc4foam, modify petscUtils.C in something along with as amgxUtils.C). (Task owner: ESI/OpenCFD)
- Testing, benchmarking, and profiling of GPU performance on various CPU host architectures and tests on industrial test-cases by working closely with the ongoing developer: cluster CPU + GPUs (Task owner: Bidder)
 - a. Optimization of the library
- 4. **Optional** Porting a selected physics model to GPUs (**Task owner**: **Bidder**). *Has to maintain compatibility with standard version OpenFOAM-vYYMM*
- 5. **Optional** Porting of a selected solver to GPU (**Task owner**: **Bidder**). *Has to maintain compatibility with standard version OpenFOAM-vYYMM*

References:

- 1. https://gitlab.hpc.cineca.it/openfoam/foam2csr,
- 2. <u>https://develop.openfoam.com/modules/external-solver</u>
- 3. <u>https://github.com/NVIDIA/AMGX</u>

Bidder Qualifications/Requirements:

The Bidder should

- 1) Reference knowledge and experience in using OpenFOAM as a Development and Applications specialist
- 2) Demonstrate experience in CUDA coding
- 3) Illustrate appropriate background for solver deployment on heterogeneous CPU and GPU systems

Response requested from the **Bidder**

A full proposal referencing the Requirements stated herein, and detailing

- 1) Tasks and deliverables
- 2) Costs
- 3) Timescales (request completion before end Dec.2022)
- 4) Unit and Applications tests suitable for integration into the standard Regression Tests

Please send the Proposal to Ivan Spisso, HPC Technical Committee Chair **<spissoivan@gmail.com>** cc Karen Kettle, OpenFOAM Governance Administrator **<ext-Karen.Kettle@esi-group.com>** Deadline for proposal from bidder to be sent back by mid-day (CEST): **22nd July 2022**

For Official use:

Date Submitted to Technical Committee (via OpenFOAM Governance Administrator)	5 th July 2022
Tender Published Externally (by Technical Committee)	6 th July 2022
Proposal Deadline Date	22 nd July 2022
Decision and Recommendation to Steering Committee	29 th July 2022