The stationary droplet by Lionel Gamet

From OpenFOAM Wiki
Revision as of 05:06, 17 September 2020 by Jozsef Nagy (talk | contribs) (Created page with "category:laminar category:multiphase * '''contributor''': Lionel Gamet * '''affiliation''': IFP Energies nouvelles, France * '''contact''': <mail address='lionel.gamet...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Go back to Multiphase modeling.

The stationary droplet

A video of the case can be downloaded here.
The starting case case can be downloaded here.
Reference OpenFOAM results can be found here.

Introduction

References

[1] S. Popinet: An accurate adaptive solver for surface-tension-driven interfacial flows," Journal of Computational Physics, vol. 228, no. 16, pp. 5838-5866, 2009.

[2] M. M. Francois, S. J. Cummins, E. D. Dendy, D. B. Kothe, J. M. Sicilian, and M. W. Williams: A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework," Journal of Computational Physics, vol. 213, no. 1, pp. 141-173, 2006.

[3] S. Popinet: A quadtree-adaptive multigrid solver for the serre-green-naghdi equations," Journal of Computational Physics, vol. 302, pp. 336-358, 2015.

[4] --: Numerical models of surface tension," Annual Review of Fluid Mechanics, vol. 50, pp. 49-75, 2018.

[5] T. Abadie, J. Aubin, and D. Legendre: On the combined effects of surface tension force calculation and interface advection on spurious currents within volume of fluid and level set frameworks," Journal of Computational Physics, vol. 297, pp. 611-636, 2015.

[6] L. Gamet, M. Scala, J. Roenby, H. Scheufler, and J.-L. Pierson: Validation of volume-of-Fluid OpenFOAM isoAdvector solvers using single bubble benchmarks," Submitted to Computers and Fluids, 2020.

[7] H. Scheufler and J. Roenby: Accurate and effcient surface reconstruction from volume fraction data on general meshes," J. Comp. Phys., vol. 383, pp. 1 - 23, 2019.