The stationary droplet by Lionel Gamet

From OpenFOAM Wiki
Jump to navigation Jump to search

Go back to Multiphase modeling.

The stationary droplet

The starting cases case can be downloaded here:

Reference OpenFOAM results of the stationary droplet can be found here.

Introduction

This case is a reference test case for Volume-of-Fluid (VoF) simulations. This benchmark configuration allows for quantitative measurements of the spurious currents appearing in VoF simulations. The case consists in a single static droplet in a quiescent liquid under zero gravity. It is a widely used test case in the literature, described by Popinet [1]. More details can be found in the iterature [1,2,3,4,5] and in the article in press of Gamet et al. [6].

[[File:StDrop2D scheme.png|540px|right|Configuration and boundary conditions for 2D static droplet case under zero gravity.]

References

[1] S. Popinet: An accurate adaptive solver for surface-tension-driven interfacial flows," Journal of Computational Physics, vol. 228, no. 16, pp. 5838-5866, 2009.

[2] M. M. Francois, S. J. Cummins, E. D. Dendy, D. B. Kothe, J. M. Sicilian, and M. W. Williams: A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework," Journal of Computational Physics, vol. 213, no. 1, pp. 141-173, 2006.

[3] S. Popinet: A quadtree-adaptive multigrid solver for the serre-green-naghdi equations," Journal of Computational Physics, vol. 302, pp. 336-358, 2015.

[4] --: Numerical models of surface tension," Annual Review of Fluid Mechanics, vol. 50, pp. 49-75, 2018.

[5] T. Abadie, J. Aubin, and D. Legendre: On the combined effects of surface tension force calculation and interface advection on spurious currents within volume of fluid and level set frameworks," Journal of Computational Physics, vol. 297, pp. 611-636, 2015.

[6] L. Gamet, M. Scala, J. Roenby, H. Scheufler, and J.-L. Pierson: Validation of volume-of-Fluid OpenFOAM isoAdvector solvers using single bubble benchmarks," Submitted to Computers and Fluids, 2020.

[7] H. Scheufler and J. Roenby: Accurate and effcient surface reconstruction from volume fraction data on general meshes," J. Comp. Phys., vol. 383, pp. 1 - 23, 2019.