Vortex induced vibration of a 2D cylinder by Michael Alletto

From OpenFOAM Wiki
Jump to navigation Jump to search

Go back to Collection by authors.

Go back to Meshing.

Vortex induced vibration of a 2D cylinder

You can download the case file https://gitlab.com/mAlletto/openfoamtutorials/-/tree/master/transverseRe100m*10] here.

Introduction

In this tutorial we will examine the capability of OpenFOAM to simulate the vortex induced vibration on a circular cylinder in a 2D laminar configuration. The cylinder is free to vibrate in stream wise and in transverse direction. This kind of flow configuration is often used to validate codes which aim to describe the interaction of a fluid with a solid structure (see e.g. [3],[6]).

Besides that, this configuration is used to answer fundamental questions of the basic physical mechanisms playing a role in the interaction between the flow and the solid body (see e.g. the review of [8]). Recent studies concentrate on the phenomena which lead to large amplitude oscillation of the cylinder and the synchronization of the vortex shedding frequency with the natural frequency of the spring-mass-damper system (see [1],[5]).

This tutorial is the final tutorial of a series of three which aims to illustrate how to validate a complex simulation task: It is convenient to break the problem first down into smaller easier sub tasks. In our example series before simulating the final problem of the vortex induced oscillations of a circular cylinder, we first simulated a fixed cylinder (see [1]), than a moving cylinder with a prescribed motion (see [2]), after that we checked the performance of the six degree of freedom body solver against an analytical solution (see [3]) and only as last point we tackled the simulation of the cylinder mounted elastically in a moving fluid. With this kind of procedure it is much easier to isolate eventual errors of the settings or maybe also bugs in the underlying code.

References

[1] Sanjay Mittal et al. Lock-in in vortex-induced vibration. Journal of Fluid Mechanics, 794:565–594, 2016.

[2] TL Morse and CHK Williamson. Prediction of vortex-induced vibration response by employing controlled motion. Journal of Fluid Mechanics, 634:5, 2009.

[3] Marie Pomarede, Elisabeth Longatte, and Jean-Franc ̧ois Sigrist. Bench- mark of numerical codes for coupled csd/cfd computations on an elemen- tary vortex induced vibration problem. In ASME Pressure Vessels and Piping Conference, volume 43673, pages 537–546, 2009.

[4] TK Prasanth and Sanjay Mittal. Vortex-induced vibrations of a circular cylinder at low reynolds numbers. Journal of Fluid Mechanics, 594:463, 2008.

[5] Diogo Sabino, David Fabre, JS Leontini, and D Lo Jacono. Vortex- induced vibration prediction via an impedance criterion. Journal of Fluid Mechanics, 890, 2020.

[6] Linwei Shen, Eng-Soon Chan, and Pengzhi Lin. Calculation of hydro- dynamic forces acting on a submerged moving object using immersed boundary method. Computers & Fluids, 38(3):691–702, 2009.

[7] SP Singh and S Mittal. Vortex-induced oscillations at low reynolds num- bers: hysteresis and vortex-shedding modes. Journal of Fluids and Struc- tures, 20(8):1085–1104, 2005.

[8] CHK Williamson and R Govardhan. Vortex-induced vibrations. Annu. Rev. Fluid Mech., 36:413–455, 2004.